Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(41): 46615-46626, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194177

RESUMO

Mixed-linker zeolitic imidazolate frameworks (ZIFs) with the sodalite (sod) topology type and based on ZIF-7 have been prepared by direct synthesis from the mixtures of benzimidazole (BzIm) and 4,5-dichloroimidazole (dcIm). Incorporation of dcIm into the ZIF-7 structure gives ZIF-7/COK-17 hybrids with rhombohedral symmetry that do not show the "open-to-closed form" structural transition upon solvent removal exhibited by ZIF-7. They show Type I isotherms for low molecular weight gases and high affinity for CO2 even at low partial pressures. Synthesis under mild conditions gives ZIF nanoparticles (250-400 nm) suitable for incorporation into mixed matrix membranes (MMMs): these were prepared with both glassy (Matrimid) and rubbery (PEBAX 1657) polymers. Permeation tests at 298 K and 1.2 bar reveal that the incorporation of Zn(BzIm0.55dcIm0.45)2 nanoparticles at up to ca. 12 wt % gives defect-free membranes with enhanced CO2 permeability in both polymer matrices, with retention of selectivity (Matrimid) or with an enhancement in selectivity that is most pronounced for the smaller nanoparticles (PEBAX). The membrane with the best performance exhibits a selectivity of ca. 200 for CO2/N2 (a 4-fold increase compared to the pure polymer) and a CO2 permeability of 64 Barrer. At the relatively low loadings investigated, the MMMs' performance obeys the Maxwell model, and the intrinsic property of diffusivity of the ZIFs can be extracted as a result.

2.
Chemistry ; 28(56): e202201689, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35821198

RESUMO

High silica zeolite ZK-5 (framework Si/Al=4.8) has been prepared by interzeolite conversion from ultrastable zeolite Y via a co-templating route using alkali metal cations and nitrate anions but without organic structure directing agents. The mechanism, which involves zeolite framework - alkali metal cation - nitrate anion ordering, has been established by a combination of chemical and thermal analyses, Raman spectroscopy, computational modelling, and X-ray powder diffraction. Ammonium exchange gives ZK-5 with occluded ammonium nitrate and subsequent heating gives microporous zeolite ZK-5.

3.
Chemistry ; 27(51): 13029-13039, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34213033

RESUMO

The flexibility of the zeolite Rho framework offers great potential for tunable molecular sieving. The fully copper-exchanged form of Rho and mixed Cu,H- and Cu,Na-forms have been prepared. EPR spectroscopy reveals that Cu2+ ions are present in the dehydrated forms and Rietveld refinement shows these prefer S6R sites, away from the d8r windows that control diffusion. Fully exchanged Cu-Rho remains in an open form upon dehydration, the d8r windows remain nearly circular and the occupancy of window sites is low, so that it adsorbs CO2 rapidly at room temperature. Breakthrough tests with 10 % CO2 /40 % CH4 mixtures show that Cu4.9 -Rho is able to produce pure methane, albeit with a relatively low capacity at this pCO2 due to the weak interaction of CO2 with Cu cations. This is in strong contrast to Na-Rho, where cations in narrow elliptical window sites enable CO2 to be adsorbed with high selectivity and uptake but too slowly to enable the production of pure methane in similar breakthrough experiments. A series of Cu,Na-Rho materials was prepared to improve uptake and selectivity compared to Cu-Rho, and kinetics compared to Na-Rho. Remarkably, Cu,Na-Rho with >2 Cu cations per unit cell exhibited exsolution, due to the preference of Na cations for narrow S8R sites in distorted Rho and of Cu cations for S6R sites in the centric, open form of Rho. The exsolved Cu,Na-Rho showed improved performance in CO2 /CH4 breakthrough tests, producing pure CH4 with improved uptake and CO2 /CH4 selectivity compared to that of Cu4.9 -Rho.

4.
Angew Chem Int Ed Engl ; 59(35): 15186-15190, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32432353

RESUMO

An AlPO4 zeotype has been prepared using the aromatic diamine 1,10-phenanthroline and some of its methylated analogues as templates. In each case the two template N atoms bind to a specific framework Al site to expand its coordination to the unusual octahedral AlO4 N2 environment. Furthermore, using this framework-bound template, Fe atoms can be included selectively at this site in the framework by direct synthesis, as confirmed by annular dark field scanning transmission electron microscopy and Rietveld refinement. Calcination removes the organic molecules to give large pore framework solids, with BET surface areas up to 540 m2 g-1 and two perpendicular sets of channels that intersect to give pore space connected by 12-ring openings along all crystallographic directions.

5.
Chemistry ; 24(49): 12796-12800, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29944779

RESUMO

Membrane separation for gas purification is an energy-efficient and environment-friendly technology. However, the development of high performance membranes is still a great challenge. In principle, mixed matrix membranes (MMMs) have the potential to overcome current materials limitations, but in practice there is no straightforward method to match the properties of fillers and polymers (the main components of MMMs) in such a way that the final membrane performance reflects the high performance of the microporous filler and the processability of the continuous polymer phase. This issue is especially important when high flux polymers are utilized. In this work, we demonstrate that the use of small amounts of a glassy polymer in combination with high performance PIM-1 allow for the preparation of metal-organic framework (MOF)-based MMMs with superior separation properties and low aging rates under humid conditions, meeting the commercial target for post-combustion CO2 capture.

6.
Chemistry ; 24(43): 11211-11219, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29799661

RESUMO

The present work shows the synthesis of nano-sized hybrid zeolitic imidazolate frameworks (ZIFs) with the rho topology based on a mixture of the linkers benzimidazole (bIm) and 4-methyl-5-imidazolecarboxaldehyde (4-m-5-ica). The hybrid ZIF was obtained by post-synthetic modification of ZIF-93 in a bIm solution. The use of different solvents, MeOH and N,N-dimethylacetamide (DMAc), and reaction times led to differences in the quantity of bIm incorporated to the framework, from 7.4 to 23 % according to solution-state NMR spectroscopy. XPS analysis showed that the mixture of linkers was also present at the surface of the particles. The inclusion of bIm to the ZIF-93 nanoparticles improved the thermal stability of the framework and also increased the hydrophobicity according to water adsorption results. N2 and CO2 adsorption experiments revealed that the hybrid material has an intermediate adsorption capacity, between those of ZIF-93 and ZIF-11. Finally, ZIF-93/11 hybrid materials were applied as fillers in polybenzimidazole (PBI) mixed matrix membranes (MMMs). These MMMs were used for H2 /CO2 separation (at 180 °C) reaching values of 207 Barrer of H2 and a H2 /CO2 selectivity of 7.7 that clearly surpassed the Robeson upper bound (corrected for this temperature).

7.
Chemistry ; 24(31): 7949-7956, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29573349

RESUMO

To gain insight into the influence of metal-organic framework (MOF) fillers and polymers on membrane performance, eight different composites were studied by combining four MOFs and two polymers. MOF materials (NH2 -MIL-53(Al), MIL-69(Al), MIL-96(Al) and ZIF-94) with various chemical functionalities, topologies, and dimensionalities of porosity were employed as fillers, and two typical polymers with different permeability-selectivity properties (6FDA-DAM and Pebax) were selected as matrices. The best-performing MOF-polymer composites were prepared by loading 25 wt % of MIL-96(Al) as filler, which improved the permeability and selectivity of 6FDA-DAM to 32 and 10 %, while for Pebax they were enhanced to 25 and 18 %, respectively. The observed differences in membrane performance in the separation of CO2 from N2 are explained on the basis of gas solubility, diffusivity properties, and compatibility between the filler and polymer phases.

8.
J Am Chem Soc ; 134(42): 17628-42, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23013547

RESUMO

A series of univalent cation forms of zeolite Rho (M(9.8)Al(9.8)Si(38.2)O(96), M = H, Li, Na, K, NH(4), Cs) and ultrastabilized zeolite Rho (US-Rho) have been prepared. Their CO(2) adsorption behavior has been measured at 298 K and up to 1 bar and related to the structures of the dehydrated forms determined by Rietveld refinement and, for H-Rho and US-Rho, by solid state NMR. Additionally, CO(2) adsorption properties of the H-form of the silicoalumino-phosphate with the RHO topology and univalent cation forms of the zeolite ZK-5 were measured for comparison. The highest uptakes at 0.1 bar, 298 K for both Rho and ZK-5 were obtained on the Li-forms (Li-Rho, 3.4 mmol g(-1); Li-ZK-5, 4.7 mmol g(-1)). H- and US-Rho had relatively low uptakes under these conditions: extra-framework Al species do not interact strongly with CO(2). Forms of zeolite Rho in which cations occupy window sites between α-cages show hysteresis in their CO(2) isotherms, the magnitude of which (Na(+),NH(4)(+) < K(+) < Cs(+)) correlates with the tendency for cations to occupy double eight-membered ring sites rather than single eight-membered ring sites. Hysteresis is not observed for zeolites where cations do not occupy the intercage windows. In situ synchrotron X-ray diffraction of the CO(2) adsorption on Na-Rho at 298 K identifies the adsorption sites. The framework structure of Na-Rho "breathes" as CO(2) is adsorbed and desorbed and its desorption kinetics from Na-Rho at 308 K have been quantified by the Zero Length Column chromatographic technique. Na-Rho shows much higher CO(2)/C(2)H(6) selectivity than Na-ZK-5, as determined by single component adsorption, indicating that whereas CO(2) can diffuse readily through windows containing Na(+) cations, ethane cannot.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...